Specifications
KEEP IN TOUCH
1. Working principle of hydraulic clutch master cylinder Basic structure and workflow Hydraulic clutch master cylinder usually consists of the fol...
READ MORE1. Structure and working principle of brake caliperThe main function of brake caliper is to press friction material to rotating brake disc through cla...
READ MORE1. Thickness detection methodObservation standard-Brake pad new thickness: 10~15mm (about 1 yuan coin thickness)Recommended replacement threshold: ≤3m...
READ MORE1. Function and working principle of 8971384830 Clutch Master CylinderThe 8971384830 Clutch Master Cylinder is the core component of the automobile cl...
READ MOREAs the exclusive high-performance brake component for Tesla Model S/X/3/Y and other models, the 104462100 brake caliper has redefined the safety braking standard in the electric era with its material technology and intelligent design. This caliper is specially optimized for Tesla's 800V high-voltage platform and intelligent driving system. It is made of carbon fiber ceramic composite material. The weight of a single caliper is only 3.8 kg, which is 65% lighter than the traditional cast iron caliper. At the same time, the compressive strength exceeds 420MPa, and there is no need to install flange gaskets or adjust the wheelbase.
The friction layer of the brake caliper adopts a graphene-enhanced silicon carbide ceramic matrix, with silicon carbide particles accounting for 40%, and a Mohs hardness of 9.5. With the laser-engraved honeycomb microporous structure, the friction coefficient is stable in the range of 0.48-0.52 during emergency braking at 100km/h. The piston system uses a titanium-aluminum alloy gradient piston group. The 42mm diameter main piston and the 36mm auxiliary piston work together through a dynamic pressure distribution algorithm. With the Tesla Booster brake booster, the 100-0km/h braking distance is shortened to 31.6 meters.
In the driving scene, its built-in MEMS micro-electromechanical sensor array can monitor the friction surface temperature, pressure distribution and wear in real time. The data is transmitted to the Autopilot system at a rate of 10Mbps through the on-board CAN-FD bus, predicting the braking demand 0.5 seconds in advance and optimizing the energy recovery strategy.